Total
94 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2016-6210 | 2 Openbsd, Redhat | 2 Openssh, Enterprise Linux | 2025-04-20 | N/A |
sshd in OpenSSH before 7.3, when SHA256 or SHA512 are used for user password hashing, uses BLOWFISH hashing on a static password when the username does not exist, which allows remote attackers to enumerate users by leveraging the timing difference between responses when a large password is provided. | ||||
CVE-2016-5548 | 2 Oracle, Redhat | 6 Jdk, Jre, Enterprise Linux and 3 more | 2025-04-20 | N/A |
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 6u131, 7u121 and 8u112; Java SE Embedded: 8u111. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS v3.0 Base Score 6.5 (Confidentiality impacts). | ||||
CVE-2017-9526 | 1 Gnupg | 1 Libgcrypt | 2025-04-20 | N/A |
In Libgcrypt before 1.7.7, an attacker who learns the EdDSA session key (from side-channel observation during the signing process) can easily recover the long-term secret key. 1.7.7 makes a cipher/ecc-eddsa.c change to store this session key in secure memory, to ensure that constant-time point operations are used in the MPI library. | ||||
CVE-2017-10118 | 5 Debian, Netapp, Oracle and 2 more | 22 Debian Linux, Active Iq Unified Manager, Cloud Backup and 19 more | 2025-04-20 | 7.5 High |
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JCE). Supported versions that are affected are Java SE: 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded, JRockit accessible data. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 7.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N). | ||||
CVE-2014-9970 | 2 Jasypt Project, Redhat | 8 Jasypt, Enterprise Linux, Jboss Bpms and 5 more | 2025-04-20 | N/A |
jasypt before 1.9.2 allows a timing attack against the password hash comparison. | ||||
CVE-2016-5549 | 2 Oracle, Redhat | 5 Jdk, Jre, Network Satellite and 2 more | 2025-04-20 | N/A |
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 7u121 and 8u112; Java SE Embedded: 8u111. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS v3.0 Base Score 6.5 (Confidentiality impacts). | ||||
CVE-2017-10135 | 5 Debian, Netapp, Oracle and 2 more | 29 Debian Linux, Active Iq Unified Manager, Cloud Backup and 26 more | 2025-04-20 | 5.9 Medium |
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JCE). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded, JRockit accessible data. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.9 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N). | ||||
CVE-2017-10115 | 5 Debian, Netapp, Oracle and 2 more | 32 Debian Linux, Active Iq Unified Manager, Cloud Backup and 29 more | 2025-04-20 | 7.5 High |
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JCE). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded, JRockit accessible data. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 7.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N). | ||||
CVE-2017-9735 | 3 Debian, Eclipse, Oracle | 7 Debian Linux, Jetty, Communications Cloud Native Core Policy and 4 more | 2025-04-20 | 7.5 High |
Jetty through 9.4.x is prone to a timing channel in util/security/Password.java, which makes it easier for remote attackers to obtain access by observing elapsed times before rejection of incorrect passwords. | ||||
CVE-2017-3156 | 2 Apache, Redhat | 3 Cxf, Jboss Amq, Jboss Fuse | 2025-04-20 | N/A |
The OAuth2 Hawk and JOSE MAC Validation code in Apache CXF prior to 3.0.13 and 3.1.x prior to 3.1.10 is not using a constant time MAC signature comparison algorithm which may be exploited by sophisticated timing attacks. | ||||
CVE-2016-5405 | 1 Redhat | 5 Enterprise Linux, Enterprise Linux Desktop, Enterprise Linux Hpc Node and 2 more | 2025-04-20 | N/A |
389 Directory Server in Red Hat Enterprise Linux Desktop 6 through 7, Red Hat Enterprise Linux HPC Node 6 through 7, Red Hat Enterprise Linux Server 6 through 7, and Red Hat Enterprise Linux Workstation 6 through 7 allows remote attackers to obtain user passwords. | ||||
CVE-2024-13176 | 2025-04-19 | 4.1 Medium | ||
Issue summary: A timing side-channel which could potentially allow recovering the private key exists in the ECDSA signature computation. Impact summary: A timing side-channel in ECDSA signature computations could allow recovering the private key by an attacker. However, measuring the timing would require either local access to the signing application or a very fast network connection with low latency. There is a timing signal of around 300 nanoseconds when the top word of the inverted ECDSA nonce value is zero. This can happen with significant probability only for some of the supported elliptic curves. In particular the NIST P-521 curve is affected. To be able to measure this leak, the attacker process must either be located in the same physical computer or must have a very fast network connection with low latency. For that reason the severity of this vulnerability is Low. The FIPS modules in 3.4, 3.3, 3.2, 3.1 and 3.0 are affected by this issue. | ||||
CVE-2015-7576 | 2 Redhat, Rubyonrails | 3 Rhel Software Collections, Rails, Ruby On Rails | 2025-04-12 | N/A |
The http_basic_authenticate_with method in actionpack/lib/action_controller/metal/http_authentication.rb in the Basic Authentication implementation in Action Controller in Ruby on Rails before 3.2.22.1, 4.0.x and 4.1.x before 4.1.14.1, 4.2.x before 4.2.5.1, and 5.x before 5.0.0.beta1.1 does not use a constant-time algorithm for verifying credentials, which makes it easier for remote attackers to bypass authentication by measuring timing differences. | ||||
CVE-2016-2513 | 2 Djangoproject, Redhat | 3 Django, Openstack, Openstack-optools | 2025-04-12 | N/A |
The password hasher in contrib/auth/hashers.py in Django before 1.8.10 and 1.9.x before 1.9.3 allows remote attackers to enumerate users via a timing attack involving login requests. | ||||
CVE-2016-2085 | 1 Linux | 1 Linux Kernel | 2025-04-12 | N/A |
The evm_verify_hmac function in security/integrity/evm/evm_main.c in the Linux kernel before 4.5 does not properly copy data, which makes it easier for local users to forge MAC values via a timing side-channel attack. | ||||
CVE-2014-3517 | 2 Openstack, Redhat | 2 Nova, Openstack | 2025-04-12 | N/A |
api/metadata/handler.py in OpenStack Compute (Nova) before 2013.2.4, 2014.x before 2014.1.2, and Juno before Juno-2, when proxying metadata requests through Neutron, makes it easier for remote attackers to guess instance ID signatures via a brute-force attack that relies on timing differences in responses to instance metadata requests. | ||||
CVE-2016-2178 | 7 Canonical, Debian, Nodejs and 4 more | 10 Ubuntu Linux, Debian Linux, Node.js and 7 more | 2025-04-12 | 5.5 Medium |
The dsa_sign_setup function in crypto/dsa/dsa_ossl.c in OpenSSL through 1.0.2h does not properly ensure the use of constant-time operations, which makes it easier for local users to discover a DSA private key via a timing side-channel attack. | ||||
CVE-2015-2601 | 2 Oracle, Redhat | 7 Jdk, Jre, Jrockit and 4 more | 2025-04-12 | N/A |
Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45, JRockit R28.3.6, and Java SE Embedded 7u75 and 8u33 allows remote attackers to affect confidentiality via vectors related to JCE. | ||||
CVE-2013-0160 | 1 Linux | 1 Linux Kernel | 2025-04-11 | N/A |
The Linux kernel through 3.7.9 allows local users to obtain sensitive information about keystroke timing by using the inotify API on the /dev/ptmx device. | ||||
CVE-2013-1624 | 2 Bouncycastle, Redhat | 8 Legion-of-the-bouncy-castle-c\#-cryptography-api, Legion-of-the-bouncy-castle-java-crytography-api, Jboss Amq and 5 more | 2025-04-11 | N/A |
The TLS implementation in the Bouncy Castle Java library before 1.48 and C# library before 1.8 does not properly consider timing side-channel attacks on a noncompliant MAC check operation during the processing of malformed CBC padding, which allows remote attackers to conduct distinguishing attacks and plaintext-recovery attacks via statistical analysis of timing data for crafted packets, a related issue to CVE-2013-0169. |