Filtered by vendor Oracle
Subscriptions
Filtered by product Peoplesoft Enterprise Peopletools
Subscriptions
Total
336 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2021-44531 | 3 Nodejs, Oracle, Redhat | 13 Node.js, Graalvm, Mysql Cluster and 10 more | 2024-11-21 | 7.4 High |
Accepting arbitrary Subject Alternative Name (SAN) types, unless a PKI is specifically defined to use a particular SAN type, can result in bypassing name-constrained intermediates. Node.js < 12.22.9, < 14.18.3, < 16.13.2, and < 17.3.1 was accepting URI SAN types, which PKIs are often not defined to use. Additionally, when a protocol allows URI SANs, Node.js did not match the URI correctly.Versions of Node.js with the fix for this disable the URI SAN type when checking a certificate against a hostname. This behavior can be reverted through the --security-revert command-line option. | ||||
CVE-2021-43797 | 6 Debian, Netapp, Netty and 3 more | 28 Debian Linux, Oncommand Workflow Automation, Snapcenter and 25 more | 2024-11-21 | 6.5 Medium |
Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty prior to version 4.1.71.Final skips control chars when they are present at the beginning / end of the header name. It should instead fail fast as these are not allowed by the spec and could lead to HTTP request smuggling. Failing to do the validation might cause netty to "sanitize" header names before it forward these to another remote system when used as proxy. This remote system can't see the invalid usage anymore, and therefore does not do the validation itself. Users should upgrade to version 4.1.71.Final. | ||||
CVE-2021-41165 | 3 Ckeditor, Drupal, Oracle | 9 Ckeditor, Drupal, Agile Product Lifecycle Management and 6 more | 2024-11-21 | 8.2 High |
CKEditor4 is an open source WYSIWYG HTML editor. In affected version a vulnerability has been discovered in the core HTML processing module and may affect all plugins used by CKEditor 4. The vulnerability allowed to inject malformed comments HTML bypassing content sanitization, which could result in executing JavaScript code. It affects all users using the CKEditor 4 at version < 4.17.0. The problem has been recognized and patched. The fix will be available in version 4.17.0. | ||||
CVE-2021-41164 | 4 Ckeditor, Drupal, Fedoraproject and 1 more | 10 Ckeditor, Drupal, Fedora and 7 more | 2024-11-21 | 8.2 High |
CKEditor4 is an open source WYSIWYG HTML editor. In affected versions a vulnerability has been discovered in the Advanced Content Filter (ACF) module and may affect all plugins used by CKEditor 4. The vulnerability allowed to inject malformed HTML bypassing content sanitization, which could result in executing JavaScript code. It affects all users using the CKEditor 4 at version < 4.17.0. The problem has been recognized and patched. The fix will be available in version 4.17.0. | ||||
CVE-2021-40690 | 4 Apache, Debian, Oracle and 1 more | 26 Cxf, Santuario Xml Security For Java, Tomee and 23 more | 2024-11-21 | 7.5 High |
All versions of Apache Santuario - XML Security for Java prior to 2.2.3 and 2.1.7 are vulnerable to an issue where the "secureValidation" property is not passed correctly when creating a KeyInfo from a KeyInfoReference element. This allows an attacker to abuse an XPath Transform to extract any local .xml files in a RetrievalMethod element. | ||||
CVE-2021-3712 | 8 Debian, Mcafee, Netapp and 5 more | 36 Debian Linux, Epolicy Orchestrator, Clustered Data Ontap and 33 more | 2024-11-21 | 7.4 High |
ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). Fixed in OpenSSL 1.0.2za (Affected 1.0.2-1.0.2y). | ||||
CVE-2021-3711 | 6 Debian, Netapp, Openssl and 3 more | 32 Debian Linux, Active Iq Unified Manager, Clustered Data Ontap and 29 more | 2024-11-21 | 9.8 Critical |
In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt(). Typically an application will call this function twice. The first time, on entry, the "out" parameter can be NULL and, on exit, the "outlen" parameter is populated with the buffer size required to hold the decrypted plaintext. The application can then allocate a sufficiently sized buffer and call EVP_PKEY_decrypt() again, but this time passing a non-NULL value for the "out" parameter. A bug in the implementation of the SM2 decryption code means that the calculation of the buffer size required to hold the plaintext returned by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second call. This can lead to a buffer overflow when EVP_PKEY_decrypt() is called by the application a second time with a buffer that is too small. A malicious attacker who is able present SM2 content for decryption to an application could cause attacker chosen data to overflow the buffer by up to a maximum of 62 bytes altering the contents of other data held after the buffer, possibly changing application behaviour or causing the application to crash. The location of the buffer is application dependent but is typically heap allocated. Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). | ||||
CVE-2021-3537 | 6 Debian, Fedoraproject, Netapp and 3 more | 21 Debian Linux, Fedora, Active Iq Unified Manager and 18 more | 2024-11-21 | 5.9 Medium |
A vulnerability found in libxml2 in versions before 2.9.11 shows that it did not propagate errors while parsing XML mixed content, causing a NULL dereference. If an untrusted XML document was parsed in recovery mode and post-validated, the flaw could be used to crash the application. The highest threat from this vulnerability is to system availability. | ||||
CVE-2021-3518 | 6 Debian, Fedoraproject, Netapp and 3 more | 20 Debian Linux, Fedora, Active Iq Unified Manager and 17 more | 2024-11-21 | 8.8 High |
There's a flaw in libxml2 in versions before 2.9.11. An attacker who is able to submit a crafted file to be processed by an application linked with libxml2 could trigger a use-after-free. The greatest impact from this flaw is to confidentiality, integrity, and availability. | ||||
CVE-2021-3517 | 6 Debian, Fedoraproject, Netapp and 3 more | 30 Debian Linux, Fedora, Active Iq Unified Manager and 27 more | 2024-11-21 | 8.6 High |
There is a flaw in the xml entity encoding functionality of libxml2 in versions before 2.9.11. An attacker who is able to supply a crafted file to be processed by an application linked with the affected functionality of libxml2 could trigger an out-of-bounds read. The most likely impact of this flaw is to application availability, with some potential impact to confidentiality and integrity if an attacker is able to use memory information to further exploit the application. | ||||
CVE-2021-3450 | 11 Fedoraproject, Freebsd, Mcafee and 8 more | 39 Fedora, Freebsd, Web Gateway and 36 more | 2024-11-21 | 7.4 High |
The X509_V_FLAG_X509_STRICT flag enables additional security checks of the certificates present in a certificate chain. It is not set by default. Starting from OpenSSL version 1.1.1h a check to disallow certificates in the chain that have explicitly encoded elliptic curve parameters was added as an additional strict check. An error in the implementation of this check meant that the result of a previous check to confirm that certificates in the chain are valid CA certificates was overwritten. This effectively bypasses the check that non-CA certificates must not be able to issue other certificates. If a "purpose" has been configured then there is a subsequent opportunity for checks that the certificate is a valid CA. All of the named "purpose" values implemented in libcrypto perform this check. Therefore, where a purpose is set the certificate chain will still be rejected even when the strict flag has been used. A purpose is set by default in libssl client and server certificate verification routines, but it can be overridden or removed by an application. In order to be affected, an application must explicitly set the X509_V_FLAG_X509_STRICT verification flag and either not set a purpose for the certificate verification or, in the case of TLS client or server applications, override the default purpose. OpenSSL versions 1.1.1h and newer are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1k. OpenSSL 1.0.2 is not impacted by this issue. Fixed in OpenSSL 1.1.1k (Affected 1.1.1h-1.1.1j). | ||||
CVE-2021-3449 | 13 Checkpoint, Debian, Fedoraproject and 10 more | 172 Multi-domain Management, Multi-domain Management Firmware, Quantum Security Gateway and 169 more | 2024-11-21 | 5.9 Medium |
An OpenSSL TLS server may crash if sent a maliciously crafted renegotiation ClientHello message from a client. If a TLSv1.2 renegotiation ClientHello omits the signature_algorithms extension (where it was present in the initial ClientHello), but includes a signature_algorithms_cert extension then a NULL pointer dereference will result, leading to a crash and a denial of service attack. A server is only vulnerable if it has TLSv1.2 and renegotiation enabled (which is the default configuration). OpenSSL TLS clients are not impacted by this issue. All OpenSSL 1.1.1 versions are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1k. OpenSSL 1.0.2 is not impacted by this issue. Fixed in OpenSSL 1.1.1k (Affected 1.1.1-1.1.1j). | ||||
CVE-2021-37714 | 5 Jsoup, Netapp, Oracle and 2 more | 24 Jsoup, Management Services For Element Software And Netapp Hci, Banking Trade Finance and 21 more | 2024-11-21 | 7.5 High |
jsoup is a Java library for working with HTML. Those using jsoup versions prior to 1.14.2 to parse untrusted HTML or XML may be vulnerable to DOS attacks. If the parser is run on user supplied input, an attacker may supply content that causes the parser to get stuck (loop indefinitely until cancelled), to complete more slowly than usual, or to throw an unexpected exception. This effect may support a denial of service attack. The issue is patched in version 1.14.2. There are a few available workarounds. Users may rate limit input parsing, limit the size of inputs based on system resources, and/or implement thread watchdogs to cap and timeout parse runtimes. | ||||
CVE-2021-37695 | 4 Ckeditor, Debian, Fedoraproject and 1 more | 12 Ckeditor, Debian Linux, Fedora and 9 more | 2024-11-21 | 7.3 High |
ckeditor is an open source WYSIWYG HTML editor with rich content support. A potential vulnerability has been discovered in CKEditor 4 [Fake Objects](https://ckeditor.com/cke4/addon/fakeobjects) package. The vulnerability allowed to inject malformed Fake Objects HTML, which could result in executing JavaScript code. It affects all users using the CKEditor 4 plugins listed above at version < 4.16.2. The problem has been recognized and patched. The fix will be available in version 4.16.2. | ||||
CVE-2021-37137 | 6 Debian, Netapp, Netty and 3 more | 23 Debian Linux, Oncommand Insight, Netty and 20 more | 2024-11-21 | 7.5 High |
The Snappy frame decoder function doesn't restrict the chunk length which may lead to excessive memory usage. Beside this it also may buffer reserved skippable chunks until the whole chunk was received which may lead to excessive memory usage as well. This vulnerability can be triggered by supplying malicious input that decompresses to a very big size (via a network stream or a file) or by sending a huge skippable chunk. | ||||
CVE-2021-37136 | 6 Debian, Netapp, Netty and 3 more | 30 Debian Linux, Oncommand Insight, Netty and 27 more | 2024-11-21 | 7.5 High |
The Bzip2 decompression decoder function doesn't allow setting size restrictions on the decompressed output data (which affects the allocation size used during decompression). All users of Bzip2Decoder are affected. The malicious input can trigger an OOME and so a DoS attack | ||||
CVE-2021-36160 | 7 Apache, Broadcom, Debian and 4 more | 16 Http Server, Brocade Fabric Operating System Firmware, Debian Linux and 13 more | 2024-11-21 | 7.5 High |
A carefully crafted request uri-path can cause mod_proxy_uwsgi to read above the allocated memory and crash (DoS). This issue affects Apache HTTP Server versions 2.4.30 to 2.4.48 (inclusive). | ||||
CVE-2021-36090 | 4 Apache, Netapp, Oracle and 1 more | 36 Commons Compress, Active Iq Unified Manager, Oncommand Insight and 33 more | 2024-11-21 | 7.5 High |
When reading a specially crafted ZIP archive, Compress can be made to allocate large amounts of memory that finally leads to an out of memory error even for very small inputs. This could be used to mount a denial of service attack against services that use Compress' zip package. | ||||
CVE-2021-35609 | 1 Oracle | 1 Peoplesoft Enterprise Peopletools | 2024-11-21 | 6.5 Medium |
Vulnerability in the PeopleSoft Enterprise PeopleTools product of Oracle PeopleSoft (component: SQR). Supported versions that are affected are 8.57, 8.58 and 8.59. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise PeopleSoft Enterprise PeopleTools. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all PeopleSoft Enterprise PeopleTools accessible data. CVSS 3.1 Base Score 6.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N). | ||||
CVE-2021-35595 | 1 Oracle | 1 Peoplesoft Enterprise Peopletools | 2024-11-21 | 6.1 Medium |
Vulnerability in the PeopleSoft Enterprise PeopleTools product of Oracle PeopleSoft (component: Business Interlink). Supported versions that are affected are 8.57, 8.58 and 8.59. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise PeopleSoft Enterprise PeopleTools. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in PeopleSoft Enterprise PeopleTools, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of PeopleSoft Enterprise PeopleTools accessible data as well as unauthorized read access to a subset of PeopleSoft Enterprise PeopleTools accessible data. CVSS 3.1 Base Score 6.1 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N). |