Filtered by vendor Netapp Subscriptions
Filtered by product Clustered Data Ontap Subscriptions
Total 189 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-29404 4 Apache, Fedoraproject, Netapp and 1 more 5 Http Server, Fedora, Clustered Data Ontap and 2 more 2024-11-21 7.5 High
In Apache HTTP Server 2.4.53 and earlier, a malicious request to a lua script that calls r:parsebody(0) may cause a denial of service due to no default limit on possible input size.
CVE-2022-28615 4 Apache, Fedoraproject, Netapp and 1 more 6 Http Server, Fedora, Clustered Data Ontap and 3 more 2024-11-21 9.1 Critical
Apache HTTP Server 2.4.53 and earlier may crash or disclose information due to a read beyond bounds in ap_strcmp_match() when provided with an extremely large input buffer. While no code distributed with the server can be coerced into such a call, third-party modules or lua scripts that use ap_strcmp_match() may hypothetically be affected.
CVE-2022-28614 4 Apache, Fedoraproject, Netapp and 1 more 6 Http Server, Fedora, Clustered Data Ontap and 3 more 2024-11-21 5.3 Medium
The ap_rwrite() function in Apache HTTP Server 2.4.53 and earlier may read unintended memory if an attacker can cause the server to reflect very large input using ap_rwrite() or ap_rputs(), such as with mod_luas r:puts() function. Modules compiled and distributed separately from Apache HTTP Server that use the 'ap_rputs' function and may pass it a very large (INT_MAX or larger) string must be compiled against current headers to resolve the issue.
CVE-2022-27781 5 Debian, Haxx, Netapp and 2 more 17 Debian Linux, Curl, Clustered Data Ontap and 14 more 2024-11-21 7.5 High
libcurl provides the `CURLOPT_CERTINFO` option to allow applications torequest details to be returned about a server's certificate chain.Due to an erroneous function, a malicious server could make libcurl built withNSS get stuck in a never-ending busy-loop when trying to retrieve thatinformation.
CVE-2022-27780 3 Haxx, Netapp, Splunk 15 Curl, Clustered Data Ontap, H300s and 12 more 2024-11-21 7.5 High
The curl URL parser wrongly accepts percent-encoded URL separators like '/'when decoding the host name part of a URL, making it a *different* URL usingthe wrong host name when it is later retrieved.For example, a URL like `http://example.com%2F127.0.0.1/`, would be allowed bythe parser and get transposed into `http://example.com/127.0.0.1/`. This flawcan be used to circumvent filters, checks and more.
CVE-2022-27779 3 Haxx, Netapp, Splunk 15 Curl, Clustered Data Ontap, H300s and 12 more 2024-11-21 5.3 Medium
libcurl wrongly allows cookies to be set for Top Level Domains (TLDs) if thehost name is provided with a trailing dot.curl can be told to receive and send cookies. curl's "cookie engine" can bebuilt with or without [Public Suffix List](https://publicsuffix.org/)awareness. If PSL support not provided, a more rudimentary check exists to atleast prevent cookies from being set on TLDs. This check was broken if thehost name in the URL uses a trailing dot.This can allow arbitrary sites to set cookies that then would get sent to adifferent and unrelated site or domain.
CVE-2022-27778 4 Haxx, Netapp, Oracle and 1 more 19 Curl, Active Iq Unified Manager, Bh500s Firmware and 16 more 2024-11-21 8.1 High
A use of incorrectly resolved name vulnerability fixed in 7.83.1 might remove the wrong file when `--no-clobber` is used together with `--remove-on-error`.
CVE-2022-27776 7 Brocade, Debian, Fedoraproject and 4 more 19 Fabric Operating System, Debian Linux, Fedora and 16 more 2024-11-21 6.5 Medium
A insufficiently protected credentials vulnerability in fixed in curl 7.83.0 might leak authentication or cookie header data on HTTP redirects to the same host but another port number.
CVE-2022-27775 6 Brocade, Debian, Haxx and 3 more 18 Fabric Operating System, Debian Linux, Curl and 15 more 2024-11-21 7.5 High
An information disclosure vulnerability exists in curl 7.65.0 to 7.82.0 are vulnerable that by using an IPv6 address that was in the connection pool but with a different zone id it could reuse a connection instead.
CVE-2022-27774 6 Brocade, Debian, Haxx and 3 more 18 Fabric Operating System, Debian Linux, Curl and 15 more 2024-11-21 5.7 Medium
An insufficiently protected credentials vulnerability exists in curl 4.9 to and include curl 7.82.0 are affected that could allow an attacker to extract credentials when follows HTTP(S) redirects is used with authentication could leak credentials to other services that exist on different protocols or port numbers.
CVE-2022-26377 4 Apache, Fedoraproject, Netapp and 1 more 6 Http Server, Fedora, Clustered Data Ontap and 3 more 2024-11-21 7.5 High
Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling') vulnerability in mod_proxy_ajp of Apache HTTP Server allows an attacker to smuggle requests to the AJP server it forwards requests to. This issue affects Apache HTTP Server Apache HTTP Server 2.4 version 2.4.53 and prior versions.
CVE-2022-23852 7 Debian, Libexpat Project, Netapp and 4 more 10 Debian Linux, Libexpat, Clustered Data Ontap and 7 more 2024-11-21 9.8 Critical
Expat (aka libexpat) before 2.4.4 has a signed integer overflow in XML_GetBuffer, for configurations with a nonzero XML_CONTEXT_BYTES.
CVE-2022-23308 7 Apple, Debian, Fedoraproject and 4 more 46 Ipados, Iphone Os, Mac Os X and 43 more 2024-11-21 7.5 High
valid.c in libxml2 before 2.9.13 has a use-after-free of ID and IDREF attributes.
CVE-2022-23241 1 Netapp 1 Clustered Data Ontap 2024-11-21 8.1 High
Clustered Data ONTAP versions 9.11.1 through 9.11.1P2 with SnapLock configured FlexGroups are susceptible to a vulnerability which could allow an authenticated remote attacker to arbitrarily modify or delete WORM data prior to the end of the retention period.
CVE-2022-22576 6 Brocade, Debian, Haxx and 3 more 18 Fabric Operating System, Debian Linux, Curl and 15 more 2024-11-21 8.1 High
An improper authentication vulnerability exists in curl 7.33.0 to and including 7.82.0 which might allow reuse OAUTH2-authenticated connections without properly making sure that the connection was authenticated with the same credentials as set for this transfer. This affects SASL-enabled protocols: SMPTP(S), IMAP(S), POP3(S) and LDAP(S) (openldap only).
CVE-2022-1473 3 Netapp, Openssl, Redhat 44 A250, A250 Firmware, A700s and 41 more 2024-11-21 7.5 High
The OPENSSL_LH_flush() function, which empties a hash table, contains a bug that breaks reuse of the memory occuppied by the removed hash table entries. This function is used when decoding certificates or keys. If a long lived process periodically decodes certificates or keys its memory usage will expand without bounds and the process might be terminated by the operating system causing a denial of service. Also traversing the empty hash table entries will take increasingly more time. Typically such long lived processes might be TLS clients or TLS servers configured to accept client certificate authentication. The function was added in the OpenSSL 3.0 version thus older releases are not affected by the issue. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2).
CVE-2022-1434 2 Netapp, Openssl 43 A250, A250 Firmware, A700s and 40 more 2024-11-21 5.9 Medium
The OpenSSL 3.0 implementation of the RC4-MD5 ciphersuite incorrectly uses the AAD data as the MAC key. This makes the MAC key trivially predictable. An attacker could exploit this issue by performing a man-in-the-middle attack to modify data being sent from one endpoint to an OpenSSL 3.0 recipient such that the modified data would still pass the MAC integrity check. Note that data sent from an OpenSSL 3.0 endpoint to a non-OpenSSL 3.0 endpoint will always be rejected by the recipient and the connection will fail at that point. Many application protocols require data to be sent from the client to the server first. Therefore, in such a case, only an OpenSSL 3.0 server would be impacted when talking to a non-OpenSSL 3.0 client. If both endpoints are OpenSSL 3.0 then the attacker could modify data being sent in both directions. In this case both clients and servers could be affected, regardless of the application protocol. Note that in the absence of an attacker this bug means that an OpenSSL 3.0 endpoint communicating with a non-OpenSSL 3.0 endpoint will fail to complete the handshake when using this ciphersuite. The confidentiality of data is not impacted by this issue, i.e. an attacker cannot decrypt data that has been encrypted using this ciphersuite - they can only modify it. In order for this attack to work both endpoints must legitimately negotiate the RC4-MD5 ciphersuite. This ciphersuite is not compiled by default in OpenSSL 3.0, and is not available within the default provider or the default ciphersuite list. This ciphersuite will never be used if TLSv1.3 has been negotiated. In order for an OpenSSL 3.0 endpoint to use this ciphersuite the following must have occurred: 1) OpenSSL must have been compiled with the (non-default) compile time option enable-weak-ssl-ciphers 2) OpenSSL must have had the legacy provider explicitly loaded (either through application code or via configuration) 3) The ciphersuite must have been explicitly added to the ciphersuite list 4) The libssl security level must have been set to 0 (default is 1) 5) A version of SSL/TLS below TLSv1.3 must have been negotiated 6) Both endpoints must negotiate the RC4-MD5 ciphersuite in preference to any others that both endpoints have in common Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2).
CVE-2022-1343 3 Netapp, Openssl, Redhat 44 A250, A250 Firmware, A700s and 41 more 2024-11-21 5.3 Medium
The function `OCSP_basic_verify` verifies the signer certificate on an OCSP response. In the case where the (non-default) flag OCSP_NOCHECKS is used then the response will be positive (meaning a successful verification) even in the case where the response signing certificate fails to verify. It is anticipated that most users of `OCSP_basic_verify` will not use the OCSP_NOCHECKS flag. In this case the `OCSP_basic_verify` function will return a negative value (indicating a fatal error) in the case of a certificate verification failure. The normal expected return value in this case would be 0. This issue also impacts the command line OpenSSL "ocsp" application. When verifying an ocsp response with the "-no_cert_checks" option the command line application will report that the verification is successful even though it has in fact failed. In this case the incorrect successful response will also be accompanied by error messages showing the failure and contradicting the apparently successful result. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2).
CVE-2022-1292 6 Debian, Fedoraproject, Netapp and 3 more 57 Debian Linux, Fedora, A250 and 54 more 2024-11-21 9.8 Critical
The c_rehash script does not properly sanitise shell metacharacters to prevent command injection. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). Fixed in OpenSSL 1.1.1o (Affected 1.1.1-1.1.1n). Fixed in OpenSSL 1.0.2ze (Affected 1.0.2-1.0.2zd).
CVE-2022-0778 8 Debian, Fedoraproject, Mariadb and 5 more 25 Debian Linux, Fedora, Mariadb and 22 more 2024-11-21 7.5 High
The BN_mod_sqrt() function, which computes a modular square root, contains a bug that can cause it to loop forever for non-prime moduli. Internally this function is used when parsing certificates that contain elliptic curve public keys in compressed form or explicit elliptic curve parameters with a base point encoded in compressed form. It is possible to trigger the infinite loop by crafting a certificate that has invalid explicit curve parameters. Since certificate parsing happens prior to verification of the certificate signature, any process that parses an externally supplied certificate may thus be subject to a denial of service attack. The infinite loop can also be reached when parsing crafted private keys as they can contain explicit elliptic curve parameters. Thus vulnerable situations include: - TLS clients consuming server certificates - TLS servers consuming client certificates - Hosting providers taking certificates or private keys from customers - Certificate authorities parsing certification requests from subscribers - Anything else which parses ASN.1 elliptic curve parameters Also any other applications that use the BN_mod_sqrt() where the attacker can control the parameter values are vulnerable to this DoS issue. In the OpenSSL 1.0.2 version the public key is not parsed during initial parsing of the certificate which makes it slightly harder to trigger the infinite loop. However any operation which requires the public key from the certificate will trigger the infinite loop. In particular the attacker can use a self-signed certificate to trigger the loop during verification of the certificate signature. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0. It was addressed in the releases of 1.1.1n and 3.0.2 on the 15th March 2022. Fixed in OpenSSL 3.0.2 (Affected 3.0.0,3.0.1). Fixed in OpenSSL 1.1.1n (Affected 1.1.1-1.1.1m). Fixed in OpenSSL 1.0.2zd (Affected 1.0.2-1.0.2zc).