Filtered by CWE-208
Total 86 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-54772 2025-02-24 5.4 Medium
An issue was discovered in the Winbox service of MikroTik RouterOS long-term release v6.43.13 through v6.49.13 and stable v6.43 through v7.17.2. A patch is available in the stable release v6.49.18. A discrepancy in response size between connection attempts made with a valid username and those with an invalid username allows attackers to enumerate for valid accounts.
CVE-2023-41313 1 Apache 1 Doris 2025-02-13 9.8 Critical
The authentication method in Apache Doris versions before 2.0.0 was vulnerable to timing attacks. Users are recommended to upgrade to version 2.0.0 + or 1.2.8, which fixes this issue.
CVE-2023-45287 2 Golang, Redhat 11 Go, Enterprise Linux, Migration Toolkit Applications and 8 more 2025-02-13 7.5 High
Before Go 1.20, the RSA based TLS key exchanges used the math/big library, which is not constant time. RSA blinding was applied to prevent timing attacks, but analysis shows this may not have been fully effective. In particular it appears as if the removal of PKCS#1 padding may leak timing information, which in turn could be used to recover session key bits. In Go 1.20, the crypto/tls library switched to a fully constant time RSA implementation, which we do not believe exhibits any timing side channels.
CVE-2023-25000 2 Hashicorp, Redhat 3 Vault, Openshift, Openshift Data Foundation 2025-02-13 5 Medium
HashiCorp Vault's implementation of Shamir's secret sharing used precomputed table lookups, and was vulnerable to cache-timing attacks. An attacker with access to, and the ability to observe a large number of unseal operations on the host through a side channel may reduce the search space of a brute force effort to recover the Shamir shares. Fixed in Vault 1.13.1, 1.12.5, and 1.11.9.
CVE-2020-1926 1 Apache 1 Hive 2025-02-13 5.9 Medium
Apache Hive cookie signature verification used a non constant time comparison which is known to be vulnerable to timing attacks. This could allow recovery of another users cookie signature. The issue was addressed in Apache Hive 2.3.8
CVE-2019-16782 4 Fedoraproject, Opensuse, Rack and 1 more 6 Fedora, Leap, Rack and 3 more 2025-02-13 6.3 Medium
There's a possible information leak / session hijack vulnerability in Rack (RubyGem rack). This vulnerability is patched in versions 1.6.12 and 2.0.8. Attackers may be able to find and hijack sessions by using timing attacks targeting the session id. Session ids are usually stored and indexed in a database that uses some kind of scheme for speeding up lookups of that session id. By carefully measuring the amount of time it takes to look up a session, an attacker may be able to find a valid session id and hijack the session. The session id itself may be generated randomly, but the way the session is indexed by the backing store does not use a secure comparison.
CVE-2024-42512 2025-02-11 8.6 High
Vulnerability in the OPC UA .NET Standard Stack before 1.5.374.158 allows an unauthorized attacker to bypass application authentication when the deprecated Basic128Rsa15 security policy is enabled.
CVE-2024-3296 1 Redhat 1 Enterprise Linux 2025-02-07 5.9 Medium
A timing-based side-channel flaw exists in the rust-openssl package, which could be sufficient to recover a plaintext across a network in a Bleichenbacher-style attack. To achieve successful decryption, an attacker would have to be able to send a large number of trial messages for decryption. The vulnerability affects the legacy PKCS#1v1.5 RSA encryption padding mode.
CVE-2023-50781 2 M2crypto Project, Redhat 5 M2crypto, Enterprise Linux, Rhev Hypervisor and 2 more 2025-02-07 7.5 High
A flaw was found in m2crypto. This issue may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data.
CVE-2020-35165 1 Dell 2 Bsafe Crypto-c-micro-edition, Bsafe Micro-edition-suite 2025-02-06 5.1 Medium
Dell BSAFE Crypto-C Micro Edition, versions before 4.1.5, and Dell BSAFE Micro Edition Suite, versions before 4.6, contain an Observable Timing Discrepancy Vulnerability.
CVE-2021-34337 1 Gnu 1 Mailman 2025-02-06 6.3 Medium
An issue was discovered in Mailman Core before 3.3.5. An attacker with access to the REST API could use timing attacks to determine the value of the configured REST API password and then make arbitrary REST API calls. The REST API is bound to localhost by default, limiting the ability for attackers to exploit this, but can optionally be made to listen on other interfaces.
CVE-2025-0693 2025-01-24 5.3 Medium
Variable response times in the AWS Sign-in IAM user login flow allowed for the use of brute force enumeration techniques to identify valid IAM usernames in an arbitrary AWS account.
CVE-2023-32694 1 Saleor 1 Saleor 2025-01-16 4.8 Medium
Saleor Core is a composable, headless commerce API. Saleor's `validate_hmac_signature` function is vulnerable to timing attacks. Malicious users could abuse this vulnerability on Saleor deployments having the Adyen plugin enabled in order to determine the secret key and forge fake events, this could affect the database integrity such as marking an order as paid when it is not. This issue has been patched in versions 3.7.68, 3.8.40, 3.9.49, 3.10.36, 3.11.35, 3.12.25, and 3.13.16.
CVE-2024-56738 2024-12-31 5.3 Medium
GNU GRUB (aka GRUB2) through 2.12 does not use a constant-time algorithm for grub_crypto_memcmp and thus allows side-channel attacks.
CVE-2024-50112 1 Linux 1 Linux Kernel 2024-12-19 7.8 High
In the Linux kernel, the following vulnerability has been resolved: x86/lam: Disable ADDRESS_MASKING in most cases Linear Address Masking (LAM) has a weakness related to transient execution as described in the SLAM paper[1]. Unless Linear Address Space Separation (LASS) is enabled this weakness may be exploitable. Until kernel adds support for LASS[2], only allow LAM for COMPILE_TEST, or when speculation mitigations have been disabled at compile time, otherwise keep LAM disabled. There are no processors in market that support LAM yet, so currently nobody is affected by this issue. [1] SLAM: https://download.vusec.net/papers/slam_sp24.pdf [2] LASS: https://lore.kernel.org/lkml/20230609183632.48706-1-alexander.shishkin@linux.intel.com/ [ dhansen: update SPECULATION_MITIGATIONS -> CPU_MITIGATIONS ]
CVE-2024-52307 1 Goauthentik 1 Authentik 2024-11-27 N/A
authentik is an open-source identity provider. Due to the usage of a non-constant time comparison for the /-/metrics/ endpoint it was possible to brute-force the SECRET_KEY, which is used to authenticate the endpoint. The /-/metrics/ endpoint returns Prometheus metrics and is not intended to be accessed directly, as the Go proxy running in the authentik server container fetches data from this endpoint and serves it on a separate port (9300 by default), which can be scraped by Prometheus without being exposed publicly. authentik 2024.8.5 and 2024.10.3 fix this issue. Since the /-/metrics/ endpoint is not intended to be accessed publicly, requests to the endpoint can be blocked by the reverse proxy/load balancer used in conjunction with authentik.
CVE-2023-50782 3 Couchbase, Cryptography.io, Redhat 7 Couchbase Server, Cryptography, Ansible Automation Platform and 4 more 2024-11-25 7.5 High
A flaw was found in the python-cryptography package. This issue may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data.
CVE-2024-0914 2 Opencryptoki Project, Redhat 3 Opencryptoki, Enterprise Linux, Rhel Eus 2024-11-24 5.9 Medium
A timing side-channel vulnerability has been discovered in the opencryptoki package while processing RSA PKCS#1 v1.5 padded ciphertexts. This flaw could potentially enable unauthorized RSA ciphertext decryption or signing, even without access to the corresponding private key.
CVE-2024-41828 1 Jetbrains 1 Teamcity 2024-11-21 2.6 Low
In JetBrains TeamCity before 2024.07 comparison of authorization tokens took non-constant time
CVE-2024-40640 2024-11-21 2.9 Low
vodozemac is an open source implementation of Olm and Megolm in pure Rust. Versions before 0.7.0 of vodozemac use a non-constant time base64 implementation for importing key material for Megolm group sessions and `PkDecryption` Ed25519 secret keys. This flaw might allow an attacker to infer some information about the secret key material through a side-channel attack. The use of a non-constant time base64 implementation might allow an attacker to observe timing variations in the encoding and decoding operations of the secret key material. This could potentially provide insights into the underlying secret key material. The impact of this vulnerability is considered low because exploiting the attacker is required to have access to high precision timing measurements, as well as repeated access to the base64 encoding or decoding processes. Additionally, the estimated leakage amount is bounded and low according to the referenced paper. This has been patched in commit 734b6c6948d4b2bdee3dd8b4efa591d93a61d272 which has been included in release version 0.7.0. Users are advised to upgrade. There are no known workarounds for this vulnerability.