Filtered by vendor Redhat
Subscriptions
Filtered by product Jboss Enterprise Web Server
Subscriptions
Total
270 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2021-25122 | 4 Apache, Debian, Oracle and 1 more | 15 Tomcat, Debian Linux, Agile Plm and 12 more | 2025-02-13 | 7.5 High |
When responding to new h2c connection requests, Apache Tomcat versions 10.0.0-M1 to 10.0.0, 9.0.0.M1 to 9.0.41 and 8.5.0 to 8.5.61 could duplicate request headers and a limited amount of request body from one request to another meaning user A and user B could both see the results of user A's request. | ||||
CVE-2021-24122 | 4 Apache, Debian, Oracle and 1 more | 6 Tomcat, Debian Linux, Agile Plm and 3 more | 2025-02-13 | 5.9 Medium |
When serving resources from a network location using the NTFS file system, Apache Tomcat versions 10.0.0-M1 to 10.0.0-M9, 9.0.0.M1 to 9.0.39, 8.5.0 to 8.5.59 and 7.0.0 to 7.0.106 were susceptible to JSP source code disclosure in some configurations. The root cause was the unexpected behaviour of the JRE API File.getCanonicalPath() which in turn was caused by the inconsistent behaviour of the Windows API (FindFirstFileW) in some circumstances. | ||||
CVE-2021-22696 | 3 Apache, Oracle, Redhat | 8 Cxf, Business Intelligence, Communications Diameter Intelligence Hub and 5 more | 2025-02-13 | 7.5 High |
CXF supports (via JwtRequestCodeFilter) passing OAuth 2 parameters via a JWT token as opposed to query parameters (see: The OAuth 2.0 Authorization Framework: JWT Secured Authorization Request (JAR)). Instead of sending a JWT token as a "request" parameter, the spec also supports specifying a URI from which to retrieve a JWT token from via the "request_uri" parameter. CXF was not validating the "request_uri" parameter (apart from ensuring it uses "https) and was making a REST request to the parameter in the request to retrieve a token. This means that CXF was vulnerable to DDos attacks on the authorization server, as specified in section 10.4.1 of the spec. This issue affects Apache CXF versions prior to 3.4.3; Apache CXF versions prior to 3.3.10. | ||||
CVE-2020-17527 | 5 Apache, Debian, Netapp and 2 more | 15 Tomcat, Debian Linux, Element Plug-in and 12 more | 2025-02-13 | 7.5 High |
While investigating bug 64830 it was discovered that Apache Tomcat 10.0.0-M1 to 10.0.0-M9, 9.0.0-M1 to 9.0.39 and 8.5.0 to 8.5.59 could re-use an HTTP request header value from the previous stream received on an HTTP/2 connection for the request associated with the subsequent stream. While this would most likely lead to an error and the closure of the HTTP/2 connection, it is possible that information could leak between requests. | ||||
CVE-2023-28708 | 2 Apache, Redhat | 3 Tomcat, Enterprise Linux, Jboss Enterprise Web Server | 2025-02-13 | 4.3 Medium |
When using the RemoteIpFilter with requests received from a reverse proxy via HTTP that include the X-Forwarded-Proto header set to https, session cookies created by Apache Tomcat 11.0.0-M1 to 11.0.0.-M2, 10.1.0-M1 to 10.1.5, 9.0.0-M1 to 9.0.71 and 8.5.0 to 8.5.85 did not include the secure attribute. This could result in the user agent transmitting the session cookie over an insecure channel. | ||||
CVE-2024-38286 | 3 Apache, Netapp, Redhat | 8 Tomcat, Ontap Tools, Enterprise Linux and 5 more | 2025-02-11 | 8.6 High |
Allocation of Resources Without Limits or Throttling vulnerability in Apache Tomcat. This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.0-M20, from 10.1.0-M1 through 10.1.24, from 9.0.13 through 9.0.89. Older, unsupported versions may also be affected. Users are recommended to upgrade to version 11.0.0-M21, 10.1.25, or 9.0.90, which fixes the issue. Apache Tomcat, under certain configurations on any platform, allows an attacker to cause an OutOfMemoryError by abusing the TLS handshake process. | ||||
CVE-2020-1938 | 8 Apache, Blackberry, Debian and 5 more | 27 Geode, Tomcat, Good Control and 24 more | 2025-02-06 | 9.8 Critical |
When using the Apache JServ Protocol (AJP), care must be taken when trusting incoming connections to Apache Tomcat. Tomcat treats AJP connections as having higher trust than, for example, a similar HTTP connection. If such connections are available to an attacker, they can be exploited in ways that may be surprising. In Apache Tomcat 9.0.0.M1 to 9.0.0.30, 8.5.0 to 8.5.50 and 7.0.0 to 7.0.99, Tomcat shipped with an AJP Connector enabled by default that listened on all configured IP addresses. It was expected (and recommended in the security guide) that this Connector would be disabled if not required. This vulnerability report identified a mechanism that allowed: - returning arbitrary files from anywhere in the web application - processing any file in the web application as a JSP Further, if the web application allowed file upload and stored those files within the web application (or the attacker was able to control the content of the web application by some other means) then this, along with the ability to process a file as a JSP, made remote code execution possible. It is important to note that mitigation is only required if an AJP port is accessible to untrusted users. Users wishing to take a defence-in-depth approach and block the vector that permits returning arbitrary files and execution as JSP may upgrade to Apache Tomcat 9.0.31, 8.5.51 or 7.0.100 or later. A number of changes were made to the default AJP Connector configuration in 9.0.31 to harden the default configuration. It is likely that users upgrading to 9.0.31, 8.5.51 or 7.0.100 or later will need to make small changes to their configurations. | ||||
CVE-2017-12615 | 4 Apache, Microsoft, Netapp and 1 more | 24 Tomcat, Windows, 7-mode Transition Tool and 21 more | 2025-02-06 | 8.1 High |
When running Apache Tomcat 7.0.0 to 7.0.79 on Windows with HTTP PUTs enabled (e.g. via setting the readonly initialisation parameter of the Default to false) it was possible to upload a JSP file to the server via a specially crafted request. This JSP could then be requested and any code it contained would be executed by the server. | ||||
CVE-2017-12617 | 6 Apache, Canonical, Debian and 3 more | 60 Tomcat, Ubuntu Linux, Debian Linux and 57 more | 2025-02-06 | 8.1 High |
When running Apache Tomcat versions 9.0.0.M1 to 9.0.0, 8.5.0 to 8.5.22, 8.0.0.RC1 to 8.0.46 and 7.0.0 to 7.0.81 with HTTP PUTs enabled (e.g. via setting the readonly initialisation parameter of the Default servlet to false) it was possible to upload a JSP file to the server via a specially crafted request. This JSP could then be requested and any code it contained would be executed by the server. | ||||
CVE-2016-8735 | 6 Apache, Canonical, Debian and 3 more | 19 Tomcat, Ubuntu Linux, Debian Linux and 16 more | 2025-02-04 | 9.8 Critical |
Remote code execution is possible with Apache Tomcat before 6.0.48, 7.x before 7.0.73, 8.x before 8.0.39, 8.5.x before 8.5.7, and 9.x before 9.0.0.M12 if JmxRemoteLifecycleListener is used and an attacker can reach JMX ports. The issue exists because this listener wasn't updated for consistency with the CVE-2016-3427 Oracle patch that affected credential types. | ||||
CVE-2024-50379 | 1 Redhat | 1 Jboss Enterprise Web Server | 2025-01-03 | 9.8 Critical |
Time-of-check Time-of-use (TOCTOU) Race Condition vulnerability during JSP compilation in Apache Tomcat permits an RCE on case insensitive file systems when the default servlet is enabled for write (non-default configuration). This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.1, from 10.1.0-M1 through 10.1.33, from 9.0.0.M1 through 9.0.97. Users are recommended to upgrade to version 11.0.2, 10.1.34 or 9.0.98, which fixes the issue. | ||||
CVE-2023-44487 | 32 Akka, Amazon, Apache and 29 more | 364 Http Server, Opensearch Data Prepper, Apisix and 361 more | 2024-12-20 | 7.5 High |
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | ||||
CVE-2014-3566 | 11 Apple, Debian, Fedoraproject and 8 more | 28 Mac Os X, Debian Linux, Fedora and 25 more | 2024-11-27 | 3.4 Low |
The SSL protocol 3.0, as used in OpenSSL through 1.0.1i and other products, uses nondeterministic CBC padding, which makes it easier for man-in-the-middle attackers to obtain cleartext data via a padding-oracle attack, aka the "POODLE" issue. | ||||
CVE-2024-34750 | 1 Redhat | 3 Enterprise Linux, Jboss Enterprise Web Server, Rhel Eus | 2024-11-21 | 7.5 High |
Improper Handling of Exceptional Conditions, Uncontrolled Resource Consumption vulnerability in Apache Tomcat. When processing an HTTP/2 stream, Tomcat did not handle some cases of excessive HTTP headers correctly. This led to a miscounting of active HTTP/2 streams which in turn led to the use of an incorrect infinite timeout which allowed connections to remain open which should have been closed. This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.0-M20, from 10.1.0-M1 through 10.1.24, from 9.0.0-M1 through 9.0.89. Users are recommended to upgrade to version 11.0.0-M21, 10.1.25 or 9.0.90, which fixes the issue. | ||||
CVE-2023-5678 | 2 Openssl, Redhat | 5 Openssl, Enterprise Linux, Jboss Core Services and 2 more | 2024-11-21 | 5.3 Medium |
Issue summary: Generating excessively long X9.42 DH keys or checking excessively long X9.42 DH keys or parameters may be very slow. Impact summary: Applications that use the functions DH_generate_key() to generate an X9.42 DH key may experience long delays. Likewise, applications that use DH_check_pub_key(), DH_check_pub_key_ex() or EVP_PKEY_public_check() to check an X9.42 DH key or X9.42 DH parameters may experience long delays. Where the key or parameters that are being checked have been obtained from an untrusted source this may lead to a Denial of Service. While DH_check() performs all the necessary checks (as of CVE-2023-3817), DH_check_pub_key() doesn't make any of these checks, and is therefore vulnerable for excessively large P and Q parameters. Likewise, while DH_generate_key() performs a check for an excessively large P, it doesn't check for an excessively large Q. An application that calls DH_generate_key() or DH_check_pub_key() and supplies a key or parameters obtained from an untrusted source could be vulnerable to a Denial of Service attack. DH_generate_key() and DH_check_pub_key() are also called by a number of other OpenSSL functions. An application calling any of those other functions may similarly be affected. The other functions affected by this are DH_check_pub_key_ex(), EVP_PKEY_public_check(), and EVP_PKEY_generate(). Also vulnerable are the OpenSSL pkey command line application when using the "-pubcheck" option, as well as the OpenSSL genpkey command line application. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue. | ||||
CVE-2023-3817 | 2 Openssl, Redhat | 7 Openssl, Enterprise Linux, Jboss Core Services and 4 more | 2024-11-21 | 5.3 Medium |
Issue summary: Checking excessively long DH keys or parameters may be very slow. Impact summary: Applications that use the functions DH_check(), DH_check_ex() or EVP_PKEY_param_check() to check a DH key or DH parameters may experience long delays. Where the key or parameters that are being checked have been obtained from an untrusted source this may lead to a Denial of Service. The function DH_check() performs various checks on DH parameters. After fixing CVE-2023-3446 it was discovered that a large q parameter value can also trigger an overly long computation during some of these checks. A correct q value, if present, cannot be larger than the modulus p parameter, thus it is unnecessary to perform these checks if q is larger than p. An application that calls DH_check() and supplies a key or parameters obtained from an untrusted source could be vulnerable to a Denial of Service attack. The function DH_check() is itself called by a number of other OpenSSL functions. An application calling any of those other functions may similarly be affected. The other functions affected by this are DH_check_ex() and EVP_PKEY_param_check(). Also vulnerable are the OpenSSL dhparam and pkeyparam command line applications when using the "-check" option. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue. | ||||
CVE-2023-3446 | 2 Openssl, Redhat | 5 Openssl, Enterprise Linux, Jboss Core Services and 2 more | 2024-11-21 | 5.3 Medium |
Issue summary: Checking excessively long DH keys or parameters may be very slow. Impact summary: Applications that use the functions DH_check(), DH_check_ex() or EVP_PKEY_param_check() to check a DH key or DH parameters may experience long delays. Where the key or parameters that are being checked have been obtained from an untrusted source this may lead to a Denial of Service. The function DH_check() performs various checks on DH parameters. One of those checks confirms that the modulus ('p' parameter) is not too large. Trying to use a very large modulus is slow and OpenSSL will not normally use a modulus which is over 10,000 bits in length. However the DH_check() function checks numerous aspects of the key or parameters that have been supplied. Some of those checks use the supplied modulus value even if it has already been found to be too large. An application that calls DH_check() and supplies a key or parameters obtained from an untrusted source could be vulernable to a Denial of Service attack. The function DH_check() is itself called by a number of other OpenSSL functions. An application calling any of those other functions may similarly be affected. The other functions affected by this are DH_check_ex() and EVP_PKEY_param_check(). Also vulnerable are the OpenSSL dhparam and pkeyparam command line applications when using the '-check' option. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue. | ||||
CVE-2022-4245 | 2 Codehaus-plexus, Redhat | 23 Plexus-utils, A Mq Clients, Amq Broker and 20 more | 2024-11-21 | 4.3 Medium |
A flaw was found in codehaus-plexus. The org.codehaus.plexus.util.xml.XmlWriterUtil#writeComment fails to sanitize comments for a --> sequence. This issue means that text contained in the command string could be interpreted as XML and allow for XML injection. | ||||
CVE-2022-4244 | 2 Codehaus-plexus, Redhat | 23 Plexus-utils, A Mq Clients, Amq Broker and 20 more | 2024-11-21 | 7.5 High |
A flaw was found in codeplex-codehaus. A directory traversal attack (also known as path traversal) aims to access files and directories stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and their variations or by using absolute file paths, it may be possible to access arbitrary files and directories stored on the file system, including application source code, configuration, and other critical system files. | ||||
CVE-2022-4132 | 2 Dogtagpki, Redhat | 3 Network Security Services For Java, Enterprise Linux, Jboss Enterprise Web Server | 2024-11-21 | 5.9 Medium |
A flaw was found in JSS. A memory leak in JSS requires non-standard configuration but is a low-effort DoS vector if configured that way (repeatedly hitting the login page). |