Filtered by vendor Redhat
Subscriptions
Filtered by product Rhel Extras Rt
Subscriptions
Total
482 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2019-11190 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Extras Rt | 2024-11-21 | N/A |
The Linux kernel before 4.8 allows local users to bypass ASLR on setuid programs (such as /bin/su) because install_exec_creds() is called too late in load_elf_binary() in fs/binfmt_elf.c, and thus the ptrace_may_access() check has a race condition when reading /proc/pid/stat. | ||||
CVE-2019-11135 | 9 Canonical, Debian, Fedoraproject and 6 more | 312 Ubuntu Linux, Debian Linux, Fedora and 309 more | 2024-11-21 | 6.5 Medium |
TSX Asynchronous Abort condition on some CPUs utilizing speculative execution may allow an authenticated user to potentially enable information disclosure via a side channel with local access. | ||||
CVE-2019-11091 | 3 Fedoraproject, Intel, Redhat | 13 Fedora, Microarchitectural Data Sampling Uncacheable Memory, Microarchitectural Data Sampling Uncacheable Memory Firmware and 10 more | 2024-11-21 | N/A |
Microarchitectural Data Sampling Uncacheable Memory (MDSUM): Uncacheable memory on some microprocessors utilizing speculative execution may allow an authenticated user to potentially enable information disclosure via a side channel with local access. A list of impacted products can be found here: https://www.intel.com/content/dam/www/public/us/en/documents/corporate-information/SA00233-microcode-update-guidance_05132019.pdf | ||||
CVE-2019-11085 | 2 Intel, Redhat | 9 I915, I915 Firmware, Enterprise Linux and 6 more | 2024-11-21 | N/A |
Insufficient input validation in Kernel Mode Driver in Intel(R) i915 Graphics for Linux before version 5.0 may allow an authenticated user to potentially enable escalation of privilege via local access. | ||||
CVE-2019-10639 | 2 Linux, Redhat | 4 Linux Kernel, Enterprise Linux, Rhel Eus and 1 more | 2024-11-21 | N/A |
The Linux kernel 4.x (starting from 4.1) and 5.x before 5.0.8 allows Information Exposure (partial kernel address disclosure), leading to a KASLR bypass. Specifically, it is possible to extract the KASLR kernel image offset using the IP ID values the kernel produces for connection-less protocols (e.g., UDP and ICMP). When such traffic is sent to multiple destination IP addresses, it is possible to obtain hash collisions (of indices to the counter array) and thereby obtain the hashing key (via enumeration). This key contains enough bits from a kernel address (of a static variable) so when the key is extracted (via enumeration), the offset of the kernel image is exposed. This attack can be carried out remotely, by the attacker forcing the target device to send UDP or ICMP (or certain other) traffic to attacker-controlled IP addresses. Forcing a server to send UDP traffic is trivial if the server is a DNS server. ICMP traffic is trivial if the server answers ICMP Echo requests (ping). For client targets, if the target visits the attacker's web page, then WebRTC or gQUIC can be used to force UDP traffic to attacker-controlled IP addresses. NOTE: this attack against KASLR became viable in 4.1 because IP ID generation was changed to have a dependency on an address associated with a network namespace. | ||||
CVE-2019-10638 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Extras Rt | 2024-11-21 | N/A |
In the Linux kernel before 5.1.7, a device can be tracked by an attacker using the IP ID values the kernel produces for connection-less protocols (e.g., UDP and ICMP). When such traffic is sent to multiple destination IP addresses, it is possible to obtain hash collisions (of indices to the counter array) and thereby obtain the hashing key (via enumeration). An attack may be conducted by hosting a crafted web page that uses WebRTC or gQUIC to force UDP traffic to attacker-controlled IP addresses. | ||||
CVE-2019-10207 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Extras Rt | 2024-11-21 | 5.5 Medium |
A flaw was found in the Linux kernel's Bluetooth implementation of UART, all versions kernel 3.x.x before 4.18.0 and kernel 5.x.x. An attacker with local access and write permissions to the Bluetooth hardware could use this flaw to issue a specially crafted ioctl function call and cause the system to crash. | ||||
CVE-2019-10140 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Extras Rt | 2024-11-21 | N/A |
A vulnerability was found in Linux kernel's, versions up to 3.10, implementation of overlayfs. An attacker with local access can create a denial of service situation via NULL pointer dereference in ovl_posix_acl_create function in fs/overlayfs/dir.c. This can allow attackers with ability to create directories on overlayfs to crash the kernel creating a denial of service (DOS). | ||||
CVE-2019-10126 | 6 Canonical, Debian, Linux and 3 more | 29 Ubuntu Linux, Debian Linux, Linux Kernel and 26 more | 2024-11-21 | 9.8 Critical |
A flaw was found in the Linux kernel. A heap based buffer overflow in mwifiex_uap_parse_tail_ies function in drivers/net/wireless/marvell/mwifiex/ie.c might lead to memory corruption and possibly other consequences. | ||||
CVE-2019-0155 | 3 Canonical, Intel, Redhat | 716 Ubuntu Linux, Atom X5-e3930, Atom X5-e3930 Firmware and 713 more | 2024-11-21 | 7.8 High |
Insufficient access control in a subsystem for Intel (R) processor graphics in 6th, 7th, 8th and 9th Generation Intel(R) Core(TM) Processor Families; Intel(R) Pentium(R) Processor J, N, Silver and Gold Series; Intel(R) Celeron(R) Processor J, N, G3900 and G4900 Series; Intel(R) Atom(R) Processor A and E3900 Series; Intel(R) Xeon(R) Processor E3-1500 v5 and v6, E-2100 and E-2200 Processor Families; Intel(R) Graphics Driver for Windows before 26.20.100.6813 (DCH) or 26.20.100.6812 and before 21.20.x.5077 (aka15.45.5077), i915 Linux Driver for Intel(R) Processor Graphics before versions 5.4-rc7, 5.3.11, 4.19.84, 4.14.154, 4.9.201, 4.4.201 may allow an authenticated user to potentially enable escalation of privilege via local access. | ||||
CVE-2019-0154 | 3 Canonical, Intel, Redhat | 302 Ubuntu Linux, Atom X5-a3930, Atom X5-a3930 Firmware and 299 more | 2024-11-21 | 5.5 Medium |
Insufficient access control in subsystem for Intel (R) processor graphics in 6th, 7th, 8th and 9th Generation Intel(R) Core(TM) Processor Families; Intel(R) Pentium(R) Processor J, N, Silver and Gold Series; Intel(R) Celeron(R) Processor J, N, G3900 and G4900 Series; Intel(R) Atom(R) Processor A and E3900 Series; Intel(R) Xeon(R) Processor E3-1500 v5 and v6 and E-2100 Processor Families may allow an authenticated user to potentially enable denial of service via local access. | ||||
CVE-2018-9568 | 4 Canonical, Google, Linux and 1 more | 16 Ubuntu Linux, Android, Linux Kernel and 13 more | 2024-11-21 | 7.8 High |
In sk_clone_lock of sock.c, there is a possible memory corruption due to type confusion. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android kernel. Android ID: A-113509306. References: Upstream kernel. | ||||
CVE-2018-9517 | 2 Google, Redhat | 3 Android, Enterprise Linux, Rhel Extras Rt | 2024-11-21 | N/A |
In pppol2tp_connect, there is possible memory corruption due to a use after free. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android kernel. Android ID: A-38159931. | ||||
CVE-2018-9516 | 4 Canonical, Debian, Google and 1 more | 5 Ubuntu Linux, Debian Linux, Android and 2 more | 2024-11-21 | N/A |
In hid_debug_events_read of drivers/hid/hid-debug.c, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Product: Android Versions: Android kernel Android ID: A-71361580. | ||||
CVE-2018-9363 | 5 Canonical, Debian, Google and 2 more | 6 Ubuntu Linux, Debian Linux, Android and 3 more | 2024-11-21 | 8.4 High |
In the hidp_process_report in bluetooth, there is an integer overflow. This could lead to an out of bounds write with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android Versions: Android kernel Android ID: A-65853588 References: Upstream kernel. | ||||
CVE-2018-8897 | 8 Apple, Canonical, Citrix and 5 more | 19 Mac Os X, Ubuntu Linux, Xenserver and 16 more | 2024-11-21 | N/A |
A statement in the System Programming Guide of the Intel 64 and IA-32 Architectures Software Developer's Manual (SDM) was mishandled in the development of some or all operating-system kernels, resulting in unexpected behavior for #DB exceptions that are deferred by MOV SS or POP SS, as demonstrated by (for example) privilege escalation in Windows, macOS, some Xen configurations, or FreeBSD, or a Linux kernel crash. The MOV to SS and POP SS instructions inhibit interrupts (including NMIs), data breakpoints, and single step trap exceptions until the instruction boundary following the next instruction (SDM Vol. 3A; section 6.8.3). (The inhibited data breakpoints are those on memory accessed by the MOV to SS or POP to SS instruction itself.) Note that debug exceptions are not inhibited by the interrupt enable (EFLAGS.IF) system flag (SDM Vol. 3A; section 2.3). If the instruction following the MOV to SS or POP to SS instruction is an instruction like SYSCALL, SYSENTER, INT 3, etc. that transfers control to the operating system at CPL < 3, the debug exception is delivered after the transfer to CPL < 3 is complete. OS kernels may not expect this order of events and may therefore experience unexpected behavior when it occurs. | ||||
CVE-2018-8781 | 4 Canonical, Debian, Linux and 1 more | 8 Ubuntu Linux, Debian Linux, Linux Kernel and 5 more | 2024-11-21 | 7.8 High |
The udl_fb_mmap function in drivers/gpu/drm/udl/udl_fb.c at the Linux kernel version 3.4 and up to and including 4.15 has an integer-overflow vulnerability allowing local users with access to the udldrmfb driver to obtain full read and write permissions on kernel physical pages, resulting in a code execution in kernel space. | ||||
CVE-2018-8087 | 4 Canonical, Debian, Linux and 1 more | 5 Ubuntu Linux, Debian Linux, Linux Kernel and 2 more | 2024-11-21 | N/A |
Memory leak in the hwsim_new_radio_nl function in drivers/net/wireless/mac80211_hwsim.c in the Linux kernel through 4.15.9 allows local users to cause a denial of service (memory consumption) by triggering an out-of-array error case. | ||||
CVE-2018-7757 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Extras Rt | 2024-11-21 | N/A |
Memory leak in the sas_smp_get_phy_events function in drivers/scsi/libsas/sas_expander.c in the Linux kernel through 4.15.7 allows local users to cause a denial of service (memory consumption) via many read accesses to files in the /sys/class/sas_phy directory, as demonstrated by the /sys/class/sas_phy/phy-1:0:12/invalid_dword_count file. | ||||
CVE-2018-7755 | 3 Canonical, Linux, Redhat | 4 Ubuntu Linux, Linux Kernel, Enterprise Linux and 1 more | 2024-11-21 | N/A |
An issue was discovered in the fd_locked_ioctl function in drivers/block/floppy.c in the Linux kernel through 4.15.7. The floppy driver will copy a kernel pointer to user memory in response to the FDGETPRM ioctl. An attacker can send the FDGETPRM ioctl and use the obtained kernel pointer to discover the location of kernel code and data and bypass kernel security protections such as KASLR. |