Filtered by vendor Redhat
Subscriptions
Filtered by product Migration Toolkit Applications
Subscriptions
Total
67 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-11831 | 1 Redhat | 35 Acm, Advanced Cluster Security, Ansible Automation Platform and 32 more | 2025-02-13 | 5.4 Medium |
A flaw was found in npm-serialize-javascript. The vulnerability occurs because the serialize-javascript module does not properly sanitize certain inputs, such as regex or other JavaScript object types, allowing an attacker to inject malicious code. This code could be executed when deserialized by a web browser, causing Cross-site scripting (XSS) attacks. This issue is critical in environments where serialized data is sent to web clients, potentially compromising the security of the website or web application using this package. | ||||
CVE-2024-29133 | 1 Redhat | 3 Amq Broker, Migration Toolkit Applications, Migration Toolkit Runtimes | 2025-02-13 | 5.4 Medium |
Out-of-bounds Write vulnerability in Apache Commons Configuration.This issue affects Apache Commons Configuration: from 2.0 before 2.10.1. Users are recommended to upgrade to version 2.10.1, which fixes the issue. | ||||
CVE-2024-29131 | 2 Apache, Redhat | 4 Commons Configuration, Amq Broker, Migration Toolkit Applications and 1 more | 2025-02-13 | 7.3 High |
Out-of-bounds Write vulnerability in Apache Commons Configuration.This issue affects Apache Commons Configuration: from 2.0 before 2.10.1. Users are recommended to upgrade to version 2.10.1, which fixes the issue. | ||||
CVE-2024-26308 | 2 Apache, Redhat | 8 Commons Compress, Camel Quarkus, Jboss Data Grid and 5 more | 2025-02-13 | 5.5 Medium |
Allocation of Resources Without Limits or Throttling vulnerability in Apache Commons Compress.This issue affects Apache Commons Compress: from 1.21 before 1.26. Users are recommended to upgrade to version 1.26, which fixes the issue. | ||||
CVE-2024-25710 | 2 Apache, Redhat | 9 Commons Compress, Amq Streams, Camel Quarkus and 6 more | 2025-02-13 | 8.1 High |
Loop with Unreachable Exit Condition ('Infinite Loop') vulnerability in Apache Commons Compress.This issue affects Apache Commons Compress: from 1.3 through 1.25.0. Users are recommended to upgrade to version 1.26.0 which fixes the issue. | ||||
CVE-2024-28849 | 1 Redhat | 14 Acm, Advanced Cluster Security, Ansible Automation Platform and 11 more | 2025-02-13 | 6.5 Medium |
follow-redirects is an open source, drop-in replacement for Node's `http` and `https` modules that automatically follows redirects. In affected versions follow-redirects only clears authorization header during cross-domain redirect, but keep the proxy-authentication header which contains credentials too. This vulnerability may lead to credentials leak, but has been addressed in version 1.15.6. Users are advised to upgrade. There are no known workarounds for this vulnerability. | ||||
CVE-2024-24786 | 2 Golang, Redhat | 23 Go, Acm, Cluster Observability Operator and 20 more | 2025-02-13 | 7.5 High |
The protojson.Unmarshal function can enter an infinite loop when unmarshaling certain forms of invalid JSON. This condition can occur when unmarshaling into a message which contains a google.protobuf.Any value, or when the UnmarshalOptions.DiscardUnknown option is set. | ||||
CVE-2023-36479 | 3 Debian, Eclipse, Redhat | 7 Debian Linux, Jetty, Jboss Fuse and 4 more | 2025-02-13 | 3.5 Low |
Eclipse Jetty Canonical Repository is the canonical repository for the Jetty project. Users of the CgiServlet with a very specific command structure may have the wrong command executed. If a user sends a request to a org.eclipse.jetty.servlets.CGI Servlet for a binary with a space in its name, the servlet will escape the command by wrapping it in quotation marks. This wrapped command, plus an optional command prefix, will then be executed through a call to Runtime.exec. If the original binary name provided by the user contains a quotation mark followed by a space, the resulting command line will contain multiple tokens instead of one. This issue was patched in version 9.4.52, 10.0.16, 11.0.16 and 12.0.0-beta2. | ||||
CVE-2023-2976 | 2 Google, Redhat | 10 Guava, Amq Broker, Amq Streams and 7 more | 2025-02-13 | 5.5 Medium |
Use of Java's default temporary directory for file creation in `FileBackedOutputStream` in Google Guava versions 1.0 to 31.1 on Unix systems and Android Ice Cream Sandwich allows other users and apps on the machine with access to the default Java temporary directory to be able to access the files created by the class. Even though the security vulnerability is fixed in version 32.0.0, we recommend using version 32.0.1 as version 32.0.0 breaks some functionality under Windows. | ||||
CVE-2022-46751 | 2 Apache, Redhat | 5 Ivy, Amq Streams, Camel Spring Boot and 2 more | 2025-02-13 | 8.2 High |
Improper Restriction of XML External Entity Reference, XML Injection (aka Blind XPath Injection) vulnerability in Apache Software Foundation Apache Ivy.This issue affects any version of Apache Ivy prior to 2.5.2. When Apache Ivy prior to 2.5.2 parses XML files - either its own configuration, Ivy files or Apache Maven POMs - it will allow downloading external document type definitions and expand any entity references contained therein when used. This can be used to exfiltrate data, access resources only the machine running Ivy has access to or disturb the execution of Ivy in different ways. Starting with Ivy 2.5.2 DTD processing is disabled by default except when parsing Maven POMs where the default is to allow DTD processing but only to include a DTD snippet shipping with Ivy that is needed to deal with existing Maven POMs that are not valid XML files but are nevertheless accepted by Maven. Access can be be made more lenient via newly introduced system properties where needed. Users of Ivy prior to version 2.5.2 can use Java system properties to restrict processing of external DTDs, see the section about "JAXP Properties for External Access restrictions" inside Oracle's "Java API for XML Processing (JAXP) Security Guide". | ||||
CVE-2023-45288 | 3 Go Standard Library, Golang, Redhat | 30 Net\/http, Http2, Acm and 27 more | 2025-02-13 | 7.5 High |
An attacker may cause an HTTP/2 endpoint to read arbitrary amounts of header data by sending an excessive number of CONTINUATION frames. Maintaining HPACK state requires parsing and processing all HEADERS and CONTINUATION frames on a connection. When a request's headers exceed MaxHeaderBytes, no memory is allocated to store the excess headers, but they are still parsed. This permits an attacker to cause an HTTP/2 endpoint to read arbitrary amounts of header data, all associated with a request which is going to be rejected. These headers can include Huffman-encoded data which is significantly more expensive for the receiver to decode than for an attacker to send. The fix sets a limit on the amount of excess header frames we will process before closing a connection. | ||||
CVE-2023-45287 | 2 Golang, Redhat | 11 Go, Enterprise Linux, Migration Toolkit Applications and 8 more | 2025-02-13 | 7.5 High |
Before Go 1.20, the RSA based TLS key exchanges used the math/big library, which is not constant time. RSA blinding was applied to prevent timing attacks, but analysis shows this may not have been fully effective. In particular it appears as if the removal of PKCS#1 padding may leak timing information, which in turn could be used to recover session key bits. In Go 1.20, the crypto/tls library switched to a fully constant time RSA implementation, which we do not believe exhibits any timing side channels. | ||||
CVE-2023-39326 | 2 Golang, Redhat | 20 Go, Ansible Automation Platform, Cryostat and 17 more | 2025-02-13 | 5.3 Medium |
A malicious HTTP sender can use chunk extensions to cause a receiver reading from a request or response body to read many more bytes from the network than are in the body. A malicious HTTP client can further exploit this to cause a server to automatically read a large amount of data (up to about 1GiB) when a handler fails to read the entire body of a request. Chunk extensions are a little-used HTTP feature which permit including additional metadata in a request or response body sent using the chunked encoding. The net/http chunked encoding reader discards this metadata. A sender can exploit this by inserting a large metadata segment with each byte transferred. The chunk reader now produces an error if the ratio of real body to encoded bytes grows too small. | ||||
CVE-2023-39325 | 4 Fedoraproject, Golang, Netapp and 1 more | 53 Fedora, Go, Http2 and 50 more | 2025-02-13 | 7.5 High |
A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing. With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection. This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2. The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function. | ||||
CVE-2023-29409 | 2 Golang, Redhat | 20 Go, Ansible Automation Platform, Cert Manager and 17 more | 2025-02-13 | 5.3 Medium |
Extremely large RSA keys in certificate chains can cause a client/server to expend significant CPU time verifying signatures. With fix, the size of RSA keys transmitted during handshakes is restricted to <= 8192 bits. Based on a survey of publicly trusted RSA keys, there are currently only three certificates in circulation with keys larger than this, and all three appear to be test certificates that are not actively deployed. It is possible there are larger keys in use in private PKIs, but we target the web PKI, so causing breakage here in the interests of increasing the default safety of users of crypto/tls seems reasonable. | ||||
CVE-2023-29406 | 2 Golang, Redhat | 19 Go, Advanced Cluster Security, Cryostat and 16 more | 2025-02-13 | 6.5 Medium |
The HTTP/1 client does not fully validate the contents of the Host header. A maliciously crafted Host header can inject additional headers or entire requests. With fix, the HTTP/1 client now refuses to send requests containing an invalid Request.Host or Request.URL.Host value. | ||||
CVE-2023-26159 | 2 Follow-redirects, Redhat | 14 Follow Redirects, Acm, Cluster Observability Operator and 11 more | 2025-02-13 | 7.3 High |
Versions of the package follow-redirects before 1.15.4 are vulnerable to Improper Input Validation due to the improper handling of URLs by the url.parse() function. When new URL() throws an error, it can be manipulated to misinterpret the hostname. An attacker could exploit this weakness to redirect traffic to a malicious site, potentially leading to information disclosure, phishing attacks, or other security breaches. | ||||
CVE-2023-24538 | 2 Golang, Redhat | 21 Go, Advanced Cluster Security, Ansible Automation Platform and 18 more | 2025-02-13 | 9.8 Critical |
Templates do not properly consider backticks (`) as Javascript string delimiters, and do not escape them as expected. Backticks are used, since ES6, for JS template literals. If a template contains a Go template action within a Javascript template literal, the contents of the action can be used to terminate the literal, injecting arbitrary Javascript code into the Go template. As ES6 template literals are rather complex, and themselves can do string interpolation, the decision was made to simply disallow Go template actions from being used inside of them (e.g. "var a = {{.}}"), since there is no obviously safe way to allow this behavior. This takes the same approach as github.com/google/safehtml. With fix, Template.Parse returns an Error when it encounters templates like this, with an ErrorCode of value 12. This ErrorCode is currently unexported, but will be exported in the release of Go 1.21. Users who rely on the previous behavior can re-enable it using the GODEBUG flag jstmpllitinterp=1, with the caveat that backticks will now be escaped. This should be used with caution. | ||||
CVE-2023-24537 | 2 Golang, Redhat | 21 Go, Advanced Cluster Security, Ansible Automation Platform and 18 more | 2025-02-13 | 7.5 High |
Calling any of the Parse functions on Go source code which contains //line directives with very large line numbers can cause an infinite loop due to integer overflow. | ||||
CVE-2023-24536 | 2 Golang, Redhat | 19 Go, Advanced Cluster Security, Ansible Automation Platform and 16 more | 2025-02-13 | 7.5 High |
Multipart form parsing can consume large amounts of CPU and memory when processing form inputs containing very large numbers of parts. This stems from several causes: 1. mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form can consume. ReadForm can undercount the amount of memory consumed, leading it to accept larger inputs than intended. 2. Limiting total memory does not account for increased pressure on the garbage collector from large numbers of small allocations in forms with many parts. 3. ReadForm can allocate a large number of short-lived buffers, further increasing pressure on the garbage collector. The combination of these factors can permit an attacker to cause an program that parses multipart forms to consume large amounts of CPU and memory, potentially resulting in a denial of service. This affects programs that use mime/multipart.Reader.ReadForm, as well as form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. With fix, ReadForm now does a better job of estimating the memory consumption of parsed forms, and performs many fewer short-lived allocations. In addition, the fixed mime/multipart.Reader imposes the following limits on the size of parsed forms: 1. Forms parsed with ReadForm may contain no more than 1000 parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxparts=. 2. Form parts parsed with NextPart and NextRawPart may contain no more than 10,000 header fields. In addition, forms parsed with ReadForm may contain no more than 10,000 header fields across all parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxheaders=. |